

APPLICATION NOTE E181VPJ-002

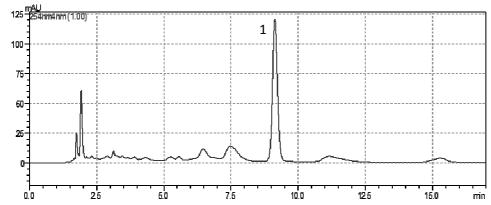
Determination of Caffeine Content in Drinks

Abstract

Caffeine is the most widely consumed psychoactive drug in the world. It is mainly valued for its positive effect on vigilance, concentration and focus. Aside from coffee beans, many other plants or plant parts like tea leafs contain caffeine. Coffee and tea are a natural resource of caffeine, but there are also artificially mixed drinks like caffeine containing soft or energy drinks. The caffeine content of the beverages can reach values up to 800 mg/L or even higher. HPLC is a versatile method to analyse caffeine content in many different beverages. Due to its sensitivity HPLC analysis allows the quantification of remaining caffeine, even in decaffeinated coffee products. HPLC can be used for quantification and product quality monitoring.

Keywords

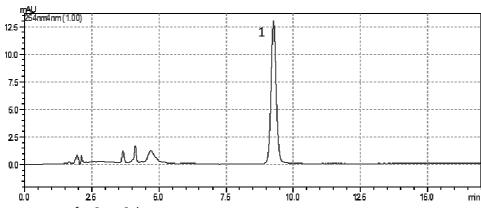
- Methylxanthine
- Caffeine

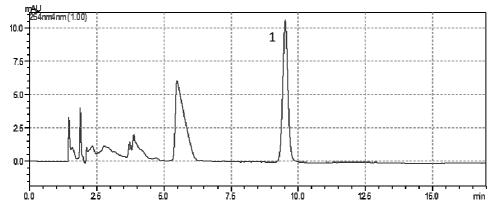

Compound information

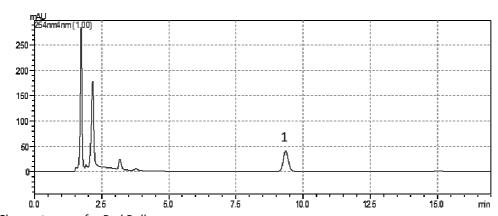
Classification	Compound name
Methylxanthine	Caffeine

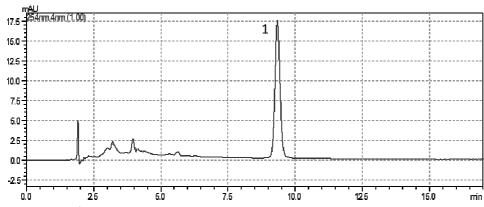

Chromatographic conditions

Column	VDSpher® PUR 100 C18-E
Particle Size, Length × inner diameter	5 μm, 150 × 4.6 mm
Order number	N1546E181VPJ
Separation mode descriptions	analytical, reversed phase
Mobile Phase	A: Water
	B: Methanol
Elution conditions	Isocratic
	0-17 min: 27% B
Flow rate	0.8 mL/min
Injection	3 μL
Column temperature	25 °C
Pressure	
HPLC system	Shimadzu LC-20AB solvent delivery system with
	online degasser and SIL-20A auto sampler
	Detector: Photodiode array UV-vis detector
	(SPD-M20A, Shimadzu), wavelength: 254 nm
Sample and sample preparation	Drinks with varying caffeine content, i.e. coffee,
	decaffeinated coffee, Coca Cola™, Coke Zero™,
	Red Bull™ energy drink, black tea
	Preparation: Coffee and tea samples were
	diluted with purified water, centrifuged and the
	supernatant was filtered with 0.2 μm PES syringe
	filters. Soft drink and energy drink samples were
	degassed using ultrasonic and diluted with
	purified water (water was purified in a Merck
	Millipore filtration unit)


Chromatograms


Chromatogram for coffee.


Chromatogram for decaffeinated coffee.


Chromatogram for Coca Cola.

Chromatogram for Coke Zero.

Chromatogram for Red Bull.

Chromatogram for black tea.

Origin

M. Sc. Franziska Bezold, Prof. Dr.-Ing. habil. Mirjana Minceva

Technische Universität München

Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung, Umwelt (School of Life Sciences Weihenstephan)

Forschungsdepartment Ingenieurwissenschaften für Lebensmittel und biogene Rohstoffe (Research Department Life Science Engineering)

Biothermodynamik (Biothermodynamics)

References

Year of application: 2015

© 2016 VDS optilab Chromatographietechnik GmbH VDS optilab does not warrant the correctness of the application.

For more information about VDSpher® columns visit our website or contact us via Email:

www.vdsoptilab.de info@vdsoptilab.de

