

Your alternative to Waters UPLC and HPLC columns

The versatile and powerful VDSpher® phases allow for numerous applications in normal and reversed phase as well as HILIC chromatography. Our wide range of phases offers excellent alternatives to Acquity, Atlantis, Delta-Pak, Nova-Pak, Resolve, Spherisorb, Symmetry, SunFire, XBridge, XSelect, XTerra, μ Bondapak and μ Porasil. Our recommendations are listed in the following tables. If you don't find the required phase on this list, please contact us to find a similar or alternative product from the wide range of VDSpher® phases.

Contents

Alternatives to Acquity	page 2
2. Alternatives to Nova-Pak	page 2
3. Alternatives to Atlantis	page 3
4. Alternatives to Delta-Pak	page 3
5. Alternatives to Resolve	page 4
6. Alternatives to Spherisorb	page 4 / page 5
7. Alternatives to SunFire	page 6
8. Alternatives to μPorasil	page 6
9. Alternatives to Symmetry	page 7
10. Alternatives to μBondapak	page 7
11. Alternatives to XBridge	page 8
12. Alternatives to XSelect	page 9
13. Alternatives to XTerra	page 10

1. Alternatives to Acquity

Waters	VDSpher [®]	
Acquity	replacement recommendation	comments
Acquity BEH C ₁₈ , 130Å,1.7μm	U-VDSpher [®] PUR 100 C18-M-SE, 1.8μm	use only in range of pH = 2 to 10 higher surface area and higher carbon load → longer retention expected
Acquity BEH C ₈ , 1.7μm	U-VDSpher [®] PUR 100 C8-E, 1.8μm	use only in range of pH = 2 to 7.5 higher surface area → longer retention expected
Acquity BEH Phenyl, 1.7μm	U-VDSpher [®] PUR 100 Phenyl-E, 1.8μm	use only in range of pH = 2 to 7.5 higher surface area → longer retention expected
Acquity BEH HILIC, 1.7μm	U-VDSpher [®] PUR 100 SIL, 1.8μm	use only in range of pH = 2 to 8 higher surface area → longer retention expected
Acquity HSS T3, 1.8μm	U-VDSpher [®] PUR 100 C18-M-SE, 1.8μm	higher surface area and higher carbon load → longer retention expected
Acquity HSS C ₁₈ , 1.8μm	U-VDSpher [®] PUR 100 C18-E, 1.8μm	higher surface area → longer retention expected
Acquity HSS CN, 1.8μm	U-VDSpher [®] PUR 100 CN, 1.8μm	endcapped higher surface area → longer retention expected

2. Alternatives to Nova-Pak

Waters	VDSpher [®]	
Nova-Pak	replacement recommendation	comments
Nova-Pak C ₁₈ , 4μm	VDSpher [®] PUR 100 C18-E, 4μm	higher surface area and higher carbon load → longer retention expected
Nova-Pak C ₈ , 4μm	VDSpher [®] PUR 100 C8-E, 4μm	higher surface area and higher carbon load → longer retention expected
Nova-Pak Phenyl, 4μm	VDSpher [®] PUR 100 Phenyl-E, 4μm	higher surface area and higher carbon load → longer retention expected
Nova-Pak CN, 4μm	VDSpher [®] PUR 100 CN, 4μm	higher surface area and higher carbon load → longer retention expected
Nova-Pak Silica, 4μm	VDSpher [®] PUR 100 SIL, 4μm	higher surface area → longer retention expected
Nova-Pak Prep HR C ₁₈ , 6μm	VDSpher [®] PUR 100 C18-E, 5μm or 7μm	higher surface area and higher carbon load → longer retention expected
Nova-Pak Prep HR Silica, 6μm	VDSpher [®] PUR 100 SIL, 5μm or 7μm	higher surface area → longer retention expected

3. Alternatives to Atlantis

Waters	VDSpher [®]	
Atlantis	replacement recommendation	comments
Atlantis T3, 3μm	VDSpher [®] PUR 100 C18-M-SE, 3μm	higher carbon load → longer retention expected
Atlantis T3, 5μm	VDSpher [®] PUR 100 C18-M-SE, 5μm	higher carbon load → longer retention expected
Atlantis T3, 10μm	VDSpher [®] PUR 100 C18-M-SE, 10μm	higher carbon load → longer retention expected
Atlantis dC ₁₈ , 3μm	VDSpher [®] PUR 100 C18-M-E, 3μm	higher carbon load → longer retention expected
Atlantis dC ₁₈ , 5μm	VDSpher [®] PUR 100 C18-M-E, 5μm	higher carbon load → longer retention expected
Atlantis dC ₁₈ , 10μm	VDSpher [®] PUR 100 C18-M-E, 10μm	higher carbon load → longer retention expected
Atlantis HILIC Silica, 3μm	VDSpher [®] PUR 100 SIL, 3μm	
Atlantis HILIC Silica, 5μm	VDSpher [®] PUR 100 HILIC, 5μm	
Atlantis HILIC Silica, 10μm	VDSpher [®] PUR 100 SIL, 10μm	

4. Alternatives to Delta-Pak

Waters	VDSpher [®]	
Delta-Pak	replacement recommendation	comments
Delta-Pak C ₁₈ , 100Å, 5μm	VDSpher [®] PUR 100 C18-E, 5µm	
Delta-Pak C ₁₈ , 300Å, 5μm	VDSpher [®] OptiBio PUR 300 C18-E, 5μm	
Delta-Pak C₄, 100Å, 5μm	VDSpher [®] PUR 100 C4-E, 5μm	
Delta-Pak C₄, 300Å, 5μm	VDSpher [®] OptiBio PUR 300 C4-E, 5μm	

5. Alternatives to Resolve

Waters	VDSpher [®]	
Resolve	replacement recommendation	comments
Resolve Silica, 5μm	VDSpher [®] 100 SIL, 5μm	higher surface area → longer retention expected
Resolve Silica, 10μm	VDSpher [®] 100 SIL, 10μm	higher surface area → longer retention expected
Resolve C ₁₈ , 5μm	VDSpher [®] 100 C18-NE, 5μm	higher surface area and higher carbon load → longer retention expected
Resolve C ₁₈ , 10μm	VDSpher [®] 100 C18-NE, 10μm	higher surface area and higher carbon load → longer retention expected
Resolve C ₈ , 10μm	VDSpher [®] 100 C8-E, 10μm	endcapped higher surface area and higher carbon load → longer retention expected
Resolve CN, 10μm	VDSpher [®] 100 CN, 10μm	endcapped higher surface area and higher carbon load → longer retention expected

6. Alternatives to Spherisorb

Waters	VDSpher [®]	
Spherisorb	replacement recommendation	comments
Spherisorb ODS2, 3μm	VDSpher [®] PUR 100 C18-E, 3μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb ODS2, 5μm	VDSpher [®] 100 C18-E, 5μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb ODS2, 10μm	VDSpher [®] 100 C18-E, 10μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb ODS1, 3μm	VDSpher [®] PUR 100 C18-NE, 3μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb ODS1, 5μm	VDSpher [®] 100 C18-NE, 5μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb ODS1, 10μm	VDSpher [®] 100 C18-NE, 10μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb ODSB, 5μm	VDSpher [®] 100 C18-E, 5μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb C ₈ , 3μm	VDSpher [®] PUR 100 C8-E, 3μm	higher purity higher surface area and higher carbon load → longer retention expected

6. Alternatives to Spherisorb (continued)

Waters	VDSpher [®]	
Spherisorb	replacement recommendation	comments
Spherisorb C ₈ , 5μm	VDSpher [®] 100 C8-E, 5μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb C ₈ , 10μm	VDSpher [®] 100 C8-E, 10μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb NH ₂ , 3μm	VDSpher [®] PUR 100 NH₂, 3μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb NH ₂ , 5μm	VDSpher [®] 100 NH ₂ , 5μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb NH ₂ , 10μm	VDSpher [®] 100 NH ₂ , 10μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb Phenyl, 3μm	VDSpher [®] PUR 100 Phenyl-E, 3μm	higher purity, endcapped higher surface area and higher carbon load → longer retention expected
Spherisorb Phenyl, 5μm	VDSpher [®] 100 Phenyl-E, 5μm	higher purity, endcapped higher surface area and higher carbon load → longer retention expected
Spherisorb Phenyl, 10μm	VDSpher [®] 100 Phenyl-E, 10μm	higher purity, endcapped higher surface area and higher carbon load → longer retention expected
Spherisorb CN, 5μm	VDSpher [®] 100 CN, 5μm	higher purity, endcapped higher surface area and higher carbon load → longer retention expected
Spherisorb CN, 10μm	VDSpher [®] 100 CN, 10μm	higher purity, endcapped higher surface area and higher carbon load → longer retention expected
Spherisorb OD/CN, 5μm	VDSpher [®] 100 C18-H, 5μm	higher purity higher surface area and higher carbon load → longer retention expected
Spherisorb W (Silica), 3μm	VDSpher [®] PUR 100 SIL, 3μm	higher purity higher surface area → longer retention expected
Spherisorb W (Silica), 5μm	VDSpher [®] 150 SIL, 5μm	higher purity
Spherisorb W (Silica), 10μm	VDSpher [®] 100 SIL, 10μm	higher purity higher surface area → longer retention expected

7. Alternatives to SunFire

Waters	VDSpher [®]	
SunFire	replacement recommendation	comments
SunFire C ₈ , 2.5μm	VDSpher [®] MS 100 C8-B-DE, 2.5μm	
SunFire C ₈ , 3.5μm	VDSpher [®] PUR 100 C8-SE, 3.5μm	
SunFire C ₈ , 5μm	VDSpher® PUR 100 C8-SE, 5µm	
SunFire C ₈ , 10μm	VDSpher [®] PUR 100 C8-SE, 10μm	
SunFire C ₁₈ , 2.5μm	VDSpher [®] MS 100 C18-DE, 2.5μm	
SunFire C ₁₈ , 3.5μm	VDSpher [®] PUR 100 C18-SE, 3.5μm	
SunFire C ₁₈ , 5μm	VDSpher [®] PUR 100 C18-SE, 5μm	
SunFire C ₁₈ , 10μm	VDSpher [®] PUR 100 C18-SE, 10μm	
SunFire Silica, 5μm	VDSpher [®] PUR 100 SIL, 5μm	
SunFire Silica, 10μm	VDSpher [®] PUR 100 SIL, 10μm	

8. Alternatives to $\mu Porasil$

Waters	VDSpher [®]	
μPorasil	replacement recommendation	comments
μPorasil, 10μm	VDSpher [®] 100 SIL, 10μm	spherical instead of irregular particles

9. Alternatives to Symmetry

Waters	VDSpher [®]	
Symmetry	replacement recommendation	comments
Symmetry C ₁₈ , 3.5μm	VDSpher [®] PUR 100 C18-SE, 3.5μm	
Symmetry C ₁₈ , 5μm	VDSpher [®] PUR 100 C18-SE, 5μm	
Symmetry C ₈ , 3.5μm	VDSpher [®] PUR 100 C8-SE, 3.5μm	
Symmetry C ₈ , 5μm	VDSpher [®] PUR 100 C8-SE, 5μm	
SymmetryPrep C ₁₈ , 7μm	VDSpher [®] PUR 100 C18-E, 7µm	
SymmetryPrep C ₈ , 7μm	VDSpher [®] PUR 100 C8-E, 7μm	
Symmetry 300 C ₁₈ , 5μm	VDSpher [®] OptiBio PUR 300 C18-SE, 5μm	
Symmetry 300 C ₄ , 5μm	VDSpher [®] OptiBio PUR 300 C4-SE, 5μm	

10. Alternatives to μBondapak

Waters	VDSpher [®]	
μBondapak	replacement recommendation	comments
μBondapak C ₁₈ , 10μm	VDSpher [®] 100 C18-E, 10μm	spherical instead of irregular particles higher carbon load → longer retention expected
μBondapak Phenyl, 10μm	VDSpher [®] 100 Phenyl-E, 10μm	spherical instead of irregular particles higher carbon load → longer retention expected
μBondapak CN, 10μm	VDSpher [®] 100 CN, 10μm	spherical instead of irregular particles
μBondapak NH ₂ , 10μm	VDSpher [®] 100 NH ₂ , 10μm	spherical instead of irregular particles

11. Alternatives to XBridge

Waters	VDSpher [®]	
XBridge	replacement recommendation	comments
XBridge C ₁₈ , 2.5μm	VDSpher [®] MS 100 C18-B-DE, 2.5μm	use only in range of pH = 2 to 10
XBridge C ₁₈ , 3.5μm	VDSpher [®] PUR 100 C18-M-SE, 3.5μm	use only in range of pH = 2 to 10
XBridge C ₁₈ , 5μm	VDSpher [®] PUR 100 C18-M-SE, 5μm	use only in range of pH = 2 to 10
XBridge C ₁₈ , 10μm	VDSpher [®] PUR 100 C18-M-SE, 10μm	use only in range of pH = 2 to 10
XBridge C ₈ , 2.5μm	VDSpher [®] MS 100 C8-B-DE, 2.5μm	use only in range of pH = 2 to 10
XBridge C ₈ , 5μm	VDSpher [®] PUR 100 C8-M-SE, 5μm	use only in range of pH = 2 to 10
XBridge Phenyl, 2.5μm	VDSpher [®] MS 100 Phenyl-B, 2.5μm	use only in range of pH = 2 to 7.5
XBridge Phenyl, 3.5μm	VDSpher [®] PUR 100 Phenyl-B, 3.5μm	use only in range of pH = 2 to 7.5
XBridge Phenyl, 5μm	VDSpher [®] PUR 100 Phenyl-B, 5μm	use only in range of pH = 2 to 7.5
XBridge HILIC, 3.5μm	VDSpher [®] PUR 100 SIL, 3.5μm	use only in range of pH = 2 to 8
XBridge HILIC, 5μm	VDSpher [®] PUR 100 HILIC, 5μm	use only in range of pH = 2 to 8
XBridge Peptide BEH C ₁₈ , 130Å, 3.5μm	VDSpher [®] PUR 100 C18-M-SE, 3.5μm	use only in range of pH = 2 to 10
XBridge Peptide BEH C ₁₈ , 130Å, 5μm	VDSpher [®] PUR 100 C18-M-SE, 5μm	use only in range of pH = 2 to 10
XBridge Peptide BEH C ₁₈ , 130Å, 10μm	VDSpher [®] PUR 100 C18-M-SE, 10μm	use only in range of pH = 2 to 10
XBridge Peptide BEH C ₁₈ , 300Å, 5μm	VDSpher [®] OptiBio PUR 300 C18-TSE, 5μm	use only in range of pH = 2 to 10
XBridge Peptide BEH C ₁₈ , 300Å, 10μm	VDSpher [®] OptiBio PUR 300 C18-TSE, 10μm	use only in range of pH = 2 to 10
XBridge Oligo BEH C ₁₈ , 2.5μm	VDSpher [®] MS 100 C18-B-DE, 2.5μm	use only in range of pH = 2 to 10

12. Alternatives to XSelect

Waters	VDSpher [®]	
XSelect	replacement recommendation	comments
XSelect HSS T3, 2.5μm	VDSpher [®] MS 100 C18-B-DE, 2.5μm	higher surface area and higher carbon load → longer retention expected
XSelect HSS T3, 3.5μm	VDSpher [®] PUR 100 C18-M-SE, 3.5μm	higher surface area and higher carbon load → longer retention expected
XSelect HSS T3, 5μm	VDSpher [®] PUR 100 C18-M-SE, 5μm	higher surface area and higher carbon load → longer retention expected
XSelect HSS C ₁₈ , 2.5μm	VDSpher [®] MS 100 C18-B-DE, 2.5μm	higher surface area → longer retention expected
XSelect HSS C ₁₈ , 3.5μm	VDSpher [®] PUR 100 C18-M-SE, 3.5μm	higher surface area → longer retention expected
XSelect HSS C ₁₈ , 5μm	VDSpher [®] PUR 100 C18-M-SE, 5μm	higher surface area → longer retention expected
XSelect HSS C ₁₈ SB, 2.5μm	VDSpher [®] MS 100 C18-B, 2.5μm	higher surface area and higher carbon load → longer retention expected
XSelect HSS C ₁₈ SB, 3.5μm	VDSpher [®] PUR 100 C18-M, 3.5μm	higher surface area and higher carbon load → longer retention expected
XSelect HSS C ₁₈ SB, 5μm	VDSpher [®] PUR 100 C18-M, 5μm	higher surface area and higher carbon load → longer retention expected
XSelect HSS CN, 2.5μm	VDSpher [®] MS 100 CN-DE, 2.5μm	endcapped higher surface area → longer retention expected
XSelect HSS CN, 3.5μm	VDSpher [®] PUR 100 CN, 3.5μm	endcapped higher surface area → longer retention expected
XSelect HSS CN, 5μm	VDSpher [®] PUR 100 CN, 5μm	endcapped higher surface area → longer retention expected

13. Alternatives to XTerra

Waters	VDSpher [®]	
XTerra	replacement recommendation	comments
XTerra MS C ₁₈ , 2.5μm	VDSpher [®] MS 100 C18-B-DE, 2.5μm	use only in range of pH = 2 to 10 higher surface area and higher carbon load → longer retention expected
XTerra MS C ₁₈ , 3.5μm	VDSpher [®] PUR 100 C18-M-SE, 3.5μm	use only in range of pH = 2 to 10 higher surface area and higher carbon load → longer retention expected
XTerra MS C ₁₈ , 5μm	VDSpher [®] PUR 100 C18-M-SE, 5μm	use only in range of pH = 2 to 10 higher surface area and higher carbon load → longer retention expected
XTerra MS C ₁₈ , 10μm	VDSpher [®] PUR 100 C18-M-SE, 10μm	use only in range of pH = 2 to 10 higher surface area and higher carbon load → longer retention expected
XTerra MS C ₈ , 2.5μm	VDSpher [®] MS 100 C8-B-DE, 2.5μm	use only in range of pH = 2 to 10 higher surface area → longer retention expected
XTerra MS C ₈ , 5μm	VDSpher [®] PUR 100 C8-M-SE, 5μm	use only in range of pH = 2 to 10 higher surface area → longer retention expected
XTerra Phenyl, 3.5μm	VDSpher [®] PUR 100 Phenyl-E, 3.5μm	use only in range of pH = 2 to 7.5 higher surface area → longer retention expected
XTerra Phenyl, 5μm	VDSpher [®] PUR 100 Phenyl-SE, 5μm	use only in range of pH = 2 to 9 higher surface area → longer retention expected

VDS optilab Chromatographietechnik GmbH does not warrant that every application can be transferred or applied without changes of chromatographic conditions.

VDSpher®, VDSpher® PUR, U-VDSpher® PUR, VDSpher® MS, VDSpher® OptiAqua, VDSpher® OptiBio and VDSpher® Flash are registered trademarks of VDS optilab Chromatographietechnik GmbH.

Manufacturer

VDS optilab Chromatographietechnik GmbH

Wiesenweg 11a Phone: +49 (0) 30 55 15 39 01
10365 Berlin Email: info@vdsoptilab.de
Germany Internet: www.vdsoptilab.de

© 2017 VDS optilab Chromatographietechnik GmbH

Your VDSpher® distributor